skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guan, Zhaoyong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The summer intraseasonal oscillation (ISO) is characterized by a northward-moving rainband in the Indo–western Pacific warm pool region. The physical origin of the ISO is not fully understood, as it is masked by strong interaction of convection and circulation. This study examines intraseasonal to interannual variability during June–August over the Indo–western Pacific warm pool region. The results show that the tropical northwest Pacific anomalous anticyclone (NWP-AAC) is a fundamental mode on both intraseasonal and interannual time scales, destabilized by the monsoon mean state, specifically through barotropic energy conversion and convective feedback in the low-level confluence between the monsoon westerlies and easterly trade winds. On the interannual time scale, the NWP-AAC shows a biennial tendency, reversing phase from the summer of El Niño to the summer that follows; the AAC in post–El Niño summer is excited indirectly through sea surface temperature anomalies in the Indo–NWP. On the intraseasonal time scale, the column-integrated moisture advection causes the NWP-AAC-related convection to propagate northward. Our results provide a unifying view of multiscale Asian summer monsoon variability, with important implications for subseasonal to seasonal prediction. 
    more » « less
  2. Abstract Summer atmospheric interannual variability in the Indo–northwestern Pacific (NWP) is coupled with tropical sea surface temperature (SST) variability. This study investigates the importance and origin of atmospheric internal variability in the Indo-NWP region. Using the reanalysis and the 30-member atmospheric model simulation, two SST-related interannual modes are identified in the Indo-NWP region during boreal summer with the month-reliant empirical orthogonal function analysis. The first mode is related to concurrent El Niño–Southern Oscillation originating from the eastern equatorial Pacific whereas the second mode features an anomalous anticyclone (AAC) in post–El Niño summers over the NWP region, known as the Indo-western Pacific Ocean capacitor. The SST-induced modes show temporal persistence from June to August. The residual variability is the focus of this study. The dominant mode of the residual variability displays an AAC structure over the NWP but little month-to-month persistence, indicative of atmospheric internal dynamics unrelated to SST forcing. Further investigation suggests the monthly internal AAC arises from the summer intraseasonal oscillation (ISO). The broad band of ISO yields nonzero monthly means that project strongly onto the AAC pattern. Finally, the anomalies of rainfall and low-level circulation in summer 2016 are investigated. The reversal of the low-level circulation pattern from an AAC in July to an anomalous cyclone over the NWP in August 2016 is due to the ISO-induced internal variability. 
    more » « less